Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Intervalo de año de publicación
3.
Phys Rev Lett ; 131(14): 142501, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37862664

RESUMEN

We present the measurement of the two-neutrino double-ß decay rate of ^{76}Ge performed with the GERDA Phase II experiment. With a subset of the entire GERDA exposure, 11.8 kg yr, the half-life of the process has been determined: T_{1/2}^{2ν}=(2.022±0.018_{stat}±0.038_{syst})×10^{21} yr. This is the most precise determination of the ^{76}Ge two-neutrino double-ß decay half-life and one of the most precise measurements of a double-ß decay process. The relevant nuclear matrix element can be extracted: M_{eff}^{2ν}=(0.101±0.001).

4.
Eur Phys J C Part Fields ; 83(9): 778, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674593

RESUMEN

We search for tri-nucleon decays of 76Ge in the dataset from the GERmanium Detector Array (GERDA) experiment. Decays that populate excited levels of the daughter nucleus above the threshold for particle emission lead to disintegration and are not considered. The ppp-, ppn-, and pnn-decays lead to 73Cu, 73Zn, and 73Ga nuclei, respectively. These nuclei are unstable and eventually proceed by the beta decay of 73Ga to 73Ge (stable). We search for the 73Ga decay exploiting the fact that it dominantly populates the 66.7 keV 73mGa state with half-life of 0.5 s. The nnn-decays of 76Ge that proceed via 73mGe are also included in our analysis. We find no signal candidate and place a limit on the sum of the decay widths of the inclusive tri-nucleon decays that corresponds to a lower lifetime limit of 1.2×1026 yr  (90% credible interval). This result improves previous limits for tri-nucleon decays by one to three orders of magnitude.

5.
Eur Phys J C Part Fields ; 83(4): 319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122826

RESUMEN

The ability to detect liquid argon scintillation light from within a densely packed high-purity germanium detector array allowed the Gerda experiment to reach an exceptionally low background rate in the search for neutrinoless double beta decay of 76 Ge. Proper modeling of the light propagation throughout the experimental setup, from any origin in the liquid argon volume to its eventual detection by the novel light read-out system, provides insight into the rejection capability and is a necessary ingredient to obtain robust background predictions. In this paper, we present a model of the Gerda liquid argon veto, as obtained by Monte Carlo simulations and constrained by calibration data, and highlight its application for background decomposition.

7.
Eur Phys J C Part Fields ; 82(4): 284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464994

RESUMEN

The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- ß decay in 76 Ge using isotopically enriched high purity germanium detectors at the Laboratori Nazionali del Gran Sasso of INFN. After Phase I (2011-2013), the experiment benefited from several upgrades, including an additional active veto based on LAr instrumentation and a significant increase of mass by point-contact germanium detectors that improved the half-life sensitivity of Phase II (2015-2019) by an order of magnitude. At the core of the background mitigation strategy, the analysis of the time profile of individual pulses provides a powerful topological discrimination of signal-like and background-like events. Data from regular 228 Th calibrations and physics data were both considered in the evaluation of the pulse shape discrimination performance. In this work, we describe the various methods applied to the data collected in Gerda Phase II corresponding to an exposure of 103.7 kg year. These methods suppress the background by a factor of about 5 in the region of interest around Q ß ß = 2039  keV, while preserving ( 81 ± 3 ) % of the signal. In addition, an exhaustive list of parameters is provided which were used in the final data analysis.

9.
Eur Phys J C Part Fields ; 81(6): 505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720720

RESUMEN

Neutrinoless double- ß decay of 76 Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in 76 Ge. IC detectors combine the large mass of the traditional semi-coaxial Ge detectors with the superior resolution and pulse shape discrimination power of point contact detectors which exhibited so far much lower mass. Their performance has been found to be satisfactory both when operated in vacuum cryostat and bare in liquid argon within the Gerda setup. The measured resolutions at the Q-value for double- ß decay of 76 Ge ( Q ß ß  = 2039 keV) are about 2.1 keV full width at half maximum in vacuum cryostat. After 18 months of operation within the ultra-low background environment of the GERmanium Detector Array (Gerda) experiment and an accumulated exposure of 8.5 kg · year, the background index after analysis cuts is measured to be 4 . 9 - 3.4 + 7.3 × 10 - 4 counts / ( keV · kg · year ) around Q ß ß . This work confirms the feasibility of IC detectors for the next-generation experiment Legend.

10.
Eur Phys J C Part Fields ; 81(8): 682, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776783

RESUMEN

The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- ß decay in 76 Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at Q ß ß = 2039.061 ( 7 )  keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double- ß decays allowed by the Standard Model. The energy resolution and stability were determined and monitored as a function of time using data from regular 228 Th calibrations. In this work, we describe the calibration process and associated data analysis of the full Gerda dataset, tailored to preserve the excellent resolution of the individual germanium detectors when combining data over several years.

11.
Sci Data ; 8(1): 218, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385471

RESUMEN

The OPERA experiment was designed to discover the vτ appearance in a vµ beam, due to neutrino oscillations. The detector, located in the underground Gran Sasso Laboratory, consisted of a nuclear photographic emulsion/lead target with a mass of about 1.25 kt, complemented by electronic detectors. It was exposed from 2008 to 2012 to the CNGS beam: an almost pure vµ beam with a baseline of 730 km, collecting a total of 1.8·1020 protons on target. The OPERA Collaboration eventually assessed the discovery of vµâ†’vτ oscillations with a statistical significance of 6.1 σ by observing ten vτ CC interaction candidates. These events have been published on the Open Data Portal at CERN. This paper provides a detailed description of the vτ data sample to make it usable by the whole community.

12.
Phys Rev Lett ; 125(1): 011801, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678643

RESUMEN

We present the first search for bosonic superweakly interacting massive particles (super-WIMPs) as keV-scale dark matter candidates performed with the GERDA experiment. GERDA is a neutrinoless double-ß decay experiment which operates high-purity germanium detectors enriched in ^{76}Ge in an ultralow background environment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for pseudoscalar and vector particles in the mass region from 60 keV/c^{2} to 1 MeV/c^{2}. No evidence for a dark matter signal was observed, and the most stringent constraints on the couplings of super-WIMPs with masses above 120 keV/c^{2} have been set. As an example, at a mass of 150 keV/c^{2} the most stringent direct limits on the dimensionless couplings of axionlike particles and dark photons to electrons of g_{ae}<3×10^{-12} and α^{'}/α<6.5×10^{-24} at 90% credible interval, respectively, were obtained.

13.
Phys Rev Lett ; 125(25): 252502, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33416389

RESUMEN

The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-ß (0νßß) decay of ^{76}Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operating bare germanium diodes, enriched in ^{76}Ge, in an active liquid argon shield, GERDA achieved an unprecedently low background index of 5.2×10^{-4} counts/(keV kg yr) in the signal region and met the design goal to collect an exposure of 100 kg yr in a background-free regime. When combined with the result of Phase I, no signal is observed after 127.2 kg yr of total exposure. A limit on the half-life of 0νßß decay in ^{76}Ge is set at T_{1/2}>1.8×10^{26} yr at 90% C.L., which coincides with the sensitivity assuming no signal.

14.
Eur Phys J C Part Fields ; 79(11): 978, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31885491

RESUMEN

The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of 76 Ge into 76 Se+2e - . Gerda has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new 76Ge enriched detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the Hades underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for Gerda Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the accuracy of pulse shape simulation codes.

15.
Neotrop Entomol ; 48(6): 1046-1057, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31664684

RESUMEN

The predatory stink bugs are well known by their behavior, but the knowledge of the immature morphology and their natural history are scarce. Studies on predatory stink bugs are important to better understand their evolution and their use as biological controllers. Here, we describe the morphology of egg and the five nymphal instars of Oplomus catena (Drury, 1782), using optical and scanning electron microscopy. In general, O. catena immatures are very distinctive from other Asopinae species already studied. The egg is black, with short aero-micropylar processes and similar to those described for Stiretrus species. The nymphs can be diagnosed by the abdominal plates very large and bright blue. The color polymorphism of adults is fully illustrated, and four color patterns are proposed. The natural history of the species is described based on field and laboratory observations. The known prey of the species is reviewed and new preys are reported. The morphological and biological traits here described are discussed in order to better understand the biological role of predatory stink bugs.


Asunto(s)
Color , Heterópteros/anatomía & histología , Ninfa/anatomía & histología , Óvulo/ultraestructura , Animales , Brasil , Femenino , Masculino , Microscopía Electrónica de Rastreo , Ninfa/ultraestructura , Fenotipo , Polimorfismo Genético
16.
Science ; 365(6460): 1445-1448, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31488705

RESUMEN

A discovery that neutrinos are Majorana fermions would have profound implications for particle physics and cosmology. The Majorana character of neutrinos would make possible the neutrinoless double-ß (0νßß) decay, a matter-creating process without the balancing emission of antimatter. The GERDA Collaboration searches for the 0νßß decay of 76Ge by operating bare germanium detectors in an active liquid argon shield. With a total exposure of 82.4 kg⋅year, we observe no signal and derive a lower half-life limit of T 1/2 > 0.9 × 1026 years (90% C.L.). Our T 1/2 sensitivity, assuming no signal, is 1.1 × 1026 years. Combining the latter with those from other 0νßß decay searches yields a sensitivity to the effective Majorana neutrino mass of 0.07 to 0.16 electron volts.

17.
Phys Rev Lett ; 120(21): 211801, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29883136

RESUMEN

The OPERA experiment was designed to study ν_{µ}→ν_{τ} oscillations in the appearance mode in the CERN to Gran Sasso Neutrino beam (CNGS). In this Letter, we report the final analysis of the full data sample collected between 2008 and 2012, corresponding to 17.97×10^{19} protons on target. Selection criteria looser than in previous analyses have produced ten ν_{τ} candidate events, thus reducing the statistical uncertainty in the measurement of the oscillation parameters and of ν_{τ} properties. A multivariate approach for event identification has been applied to the candidate events and the discovery of ν_{τ} appearance is confirmed with an improved significance level of 6.1σ. |Δm_{32}^{2}| has been measured, in appearance mode, with an accuracy of 20%. The measurement of the ν_{τ} charged-current cross section, for the first time with a negligible contamination from ν[over ¯]_{τ}, and the first direct evidence for the ν_{τ} lepton number are also reported.

18.
Phys Rev Lett ; 120(13): 132503, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694176

RESUMEN

The GERDA experiment searches for the lepton-number-violating neutrinoless double-ß decay of ^{76}Ge (^{76}Ge→^{76}Se+2e^{-}) operating bare Ge diodes with an enriched ^{76}Ge fraction in liquid argon. The exposure for broad-energy germanium type (BEGe) detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of 1.0_{-0.4}^{+0.6}×10^{-3} counts/(keV kg yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0νßß experiment. No signal is observed and a new 90% C.L. lower limit for the half-life of 8.0×10^{25} yr is placed when combining with our previous data. The expected median sensitivity assuming no signal is 5.8×10^{25} yr.

19.
Appl Radiat Isot ; 125: 163-168, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28453976

RESUMEN

Pulse shape discrimination is an important handle to improve sensitivity in low background experiments. A dedicated setup was built to investigate the response of high-purity germanium detectors to single Compton scattered events. Using properly collimated γ-ray sources, it is possible to select events with known interaction location. The aim is to correlate the position dependent signal shape with geometrical and electrical properties of the detector. We report on design and performance of the setup with a first look on data.

20.
Phys Rev Lett ; 115(12): 121802, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26430986

RESUMEN

The OPERA experiment was designed to search for ν_{µ}→ν_{τ} oscillations in appearance mode, i.e., by detecting the τ leptons produced in charged current ν_{τ} interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of the ν_{µ}→ν_{τ} appearance, achieved with four candidate events in a subsample of the data, was previously reported. In this Letter, a fifth ν_{τ} candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of ν_{µ}→ν_{τ} oscillations in appearance mode with a significance larger than 5σ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...